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An explicit combinatorial expression is obtained for the Zhang-Zhang polynomial (also known as
“Clar cover polynomial”) of a large class of pericondensed benzenoid systems, the multiple linear
hexagonal chains Mn,m. By means of this result, various problems encountered in the Clar theory of
Mn,m are also resolved: counting of Clar and Kekulé structures, determining the Clar number, and
calculating the sextet polynomial.
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1. Introduction

In a series of papers [1 – 4] Heping Zhang and
Fuji Zhang introduced a molecular-graph-based poly-
nomial, pertaining to the Clar aromatic sextet theory of
benzenoid hydrocarbons [5 – 7]. They named it “Clar
cover polynomial”, but in our opinion it deserves to
be called “Zhang-Zhang polynomial”. We denote it by
ζ (B) = ζ (B,λ ), where B stands for the underlying
benzenoid system.

Let B be a benzenoid system with K = K{B} > 0
Kekulé structures and C = C{B} > 0 Clar aromatic
sextet formulas [6]. The Clar formulas possess a max-
imal possible number of aromatic sextets (denoted by
Cl = Cl{B} > 0 and called the Clar number [8]). If
the number of aromatic sextets is not required to be
maximum (= Cl{B}), then one speaks of generalized
Clar formulas; these were first considered by Hosoya
and Yamaguchi [9]. Let their number be denoted by
K̃ = K̃{B}. For many benzenoid systems (including
those that are studied in this paper), K̃ = K.

Let Si (i = 1,2, , . . . , K̃{B}), be the generalized Clar
formulas of the benzenoid system B. Let Si possess ci

aromatic sextets, 0 ≤ ci ≤ Cl{B}. Let the π-electrons
of B, not included in the ci aromatic sextets of Si be
arranged into ki distinct Kekulé structures.

The Zhang-Zhang polynomial may now be defined
as

ζ (B) = ζ (B,λ ) =
K̃{B}
∑
i=1

kiλ ci . (1)
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Fig. 1. There are 56 distinct generalized Clar formulas of the
triple hexagonal chain M3,5, of which four (S1, S2, S3, and S4)
are shown. By ci and ki are denoted the number of aromatic
sextets and Kekulé structures of Si, (i = 1,2,3,4). In the case
of S2 the respective three Kekulé structures are shown.

The Zhang-Zhang polynomial of M3,5 is 10λ 3 + 60λ2 +
105λ +56, implying that M3,5 has K = 56 Kekulé and C = 10
Clar structures, and that its Clar number is Cl = 3. Be-
cause 10λ3 + 60λ2 + 105λ + 56 = 10(λ + 1)3 + 30(λ +
1)2 +15(λ +1)+1, the sextet polynomial of M3,5 is equal to
10λ3 + 30λ2 + 15λ + 1 and, consequently, M3,5 has a total
of K̃ = 10+30+15+1 = 56 generalized Clar formulas.
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Formula (1) should be compared with the analogous
expression for the sextet polynomial [9 – 12]

σ(B) = σ(B,λ ) =
K̃{B}
∑
i=1

λ ci . (2)

An example, illustrating the Clar theoretic concepts
encountered in (1), is shown in Figure 1. As one may
guess from this example, the calculation of ζ (x) di-
rectly from (1) would be a rather cumbersome and
error-prone task.

In what follows it is convenient to write the Zhang-
Zhang and the sextet polynomials in the form

ζ (B,λ ) =
Cl{B}
∑
k=0

z(B,k)λ k, (3)

σ(B,λ ) =
Cl{B}
∑
k=0

s(B,k)λ k. (4)

The basic properties of the Zhang-Zhang polyno-
mial are the following:

(a) The coefficient z(B,0) is equal to the number of
Kekulé structures, K{B}.

(b) The power of ζ (B,x) is equal to the Clar number,
Cl{B}.

(c) The coefficient z(B,Cl) is equal to the number of
Clar aromatic sextet formulas, C{B}.

Thus, all the important mathematical features of the
Clar aromatic sextet theory are contained in the Zhang-
Zhang polynomial. If we calculate this polynomial,
then we simultaneously determine K, C, Cl, and – as
pointed out below – K̃ and σ(x). It is worth men-
tioning that in the earlier chemical literature separate
approaches were elaborated for counting the Kekulé
structures [13], Clar formulas [14, 15], and generalized
Clar formulas [16, 17], as well as for the determination
of the Clar number [8, 16, 18, 19] and the sextet poly-
nomial [10 – 12, 19, 20] of benzenoid molecules.

Now, the Zhang-Zhang polynomial can be com-
puted recursively [2]: Let ers be an edge of the ben-
zenoid system B, connecting the vertices v r and vs. Let
further ers lie on the perimeter of B and thus belong to
a unique hexagon H. (For an illustrative example see
Fig. 2.) Then

ζ (B,λ ) = ζ (B− ers,λ )+ ζ (B− vr− vs,λ )

+ λ ζ (B−H,λ ).
(5)

The subgraphs occurring on the right-hand side of (5)
may possess edges that do not belong to any cycle. If B ′
is such a subgraph and e′xy such an edge (connecting the
vertices vx and vy), then

ζ (B′,λ ) = ζ (B′ −exy,λ )+ζ (B′ −vx −vy,λ ). (6)

A special case of (6) is obtained if the vertex vx is of
degree 1. Then,

ζ (B′,λ ) = ζ (B′ − vx − vy,λ ). (7)

Using formulas (5) – (7), Zhang and Zhang have ob-
tained explicit combinatorial expressions for ζ (B) for
a variety of homologous series of catacondensed ben-
zenoid systems [2], but not for a single pericondensed
benzenoid. In this paper we intend to contribute to fill-
ing this gap.

2. The Multiple Linear Hexagonal Chain
Benzenoids

The structure of the multiple linear hexagonal chain
benzenoid hydrocarbons, whose general representative
is denoted by Mn,m, is depicted in Figure 2.

Fig. 2. The multiple linear hexagonal chain Mn,m and its sub-
graphs needed for the calculation of the Zhang-Zhang poly-
nomial; for details see text.
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In order to determine ζ (Mn,m,λ ) it is convenient to
start the application of (5) by choosing the edge e rs
as indicated in Figure 2. If so, then the subgraphs
(Mn,m − ers), (Mn,m − vr − vs), and (Mn,m −H) possess
vertices of degree one, and to these subgraphs (7) is
applicable. According to (7), by deleting a vertex of
degree one and its (unique) first neighbor the Zhang-
Zhang polynomial remains unchanged. If (Mn,m − ers),
(Mn,m−vr−vs), and (Mn,m−H), such two-vertex dele-
tions can be consecutively repeated several times, as
indicated by the encircled pairs of vertices in the re-
spective diagrams in Figure 2. Finally we arrive at

ζ (Mn,m − ers) = ζ (Mn,m−1),
ζ (Mn,m − vr − vs) = ζ (Mn−1,m),

ζ (Mn,m −H) = ζ (Mn−1,m−1),

which combined with (5) yields the recurrence relation

ζ (Mn,m) = ζ (Mn,m−1)+ ζ (Mn−1,m)
+ λ ζ (Mn−1,m−1).

(8)

3. Solving (8)

3.1. Single Linear Hexagonal Chains (Polyacenes);
m = 1

In the case of linear polyacenes Mn,1, n≥ 1 [benzene
(n = 1), naphthalene (n = 2), anthracene (n = 3), . . . ],
the solution is immediate. For these benzenoidsCl = 1,
K = n+ 1, and C = n, which in view of the properties
(a) – (c), results in

ζ (Mn,1) = nλ +(n+ 1). (9)

Formula (9) has first been deduced in [2]. For reasons
that will become clear below we rewrite (9) as

ζ (Mn,1) =
(

n
1

)
λ +

(
n+ 1

1

)
, n ≥ 1. (10)

3.2. Double Linear Hexagonal Chains; m = 2

In the case of double linear chain benzenoids Mn,2,
n≥ 2 [pyrene (n = 2), anthanthrene (n = 3), . . . ], (8) re-
duces to

ζ (Mn,2) = ζ (Mn,1)+ ζ (Mn−1,2)+ λ ζ (Mn−1,1).

Substituting (9) we arrive at

ζ (Mn,2) = ζ (Mn−1,2)+
[
(n−1)λ 2 + 2nλ +(n+ 1)

]
,

from which

ζ (Mn,2)= ζ (M1,2)+
n

∑
k=2

[
(k−1)λ 2 + 2kλ +(k + 1)

]
.

(11)

Bearing in mind that M1,2 ≡ M2,1 = naphthalene, with
ζ (M2,1) = 2λ + 3, from (11) we directly compute

ζ (Mn,2) =
1
2

n(n−1)λ 2 + n(n+ 1)λ

+
1
2
(n+ 2)(n+ 1),

(12)

which may be written as

ζ (Mn,2) =
(

n
2

)
λ 2 +2

(
n+ 1

2

)
λ +

(
n+ 2

2

)
, n≥ 2.

(13)

3.3. Triple Linear Hexagonal Chains; m = 3

The starting recurrence relation now reads

ζ (Mn,3) = ζ (Mn,2)+ ζ (Mn−1,3)+ λ ζ (Mn−1,2).

Combining the above expression with (12) yields

ζ (Mn,3) = ζ (Mn−1,3)

+
[

1
2
(n−1)(n−2)λ 3 +

3
2

n(n−1)λ 2

+
3
2

n(n+ 1)λ +
1
2
(n+ 1)(n+ 2)

]
,

from which

ζ (Mn,3) = ζ (M2,3)

+
n

∑
k=3

[
1
2
(k−1)(k−2)λ 3 +

3
2

k(k−1)λ 2

+
3
2

k(k + 1)λ +
1
2
(k + 1)(k + 2)

]
.

Bearing in mind that ζ (M2,3) ≡ ζ (M3,2) = 3λ 2 +
12λ + 10, after a lengthy calculation we arrive at

ζ (Mn,3) =
1
6

n(n−1)(n−2)λ 3 +
1
2

n(n−1)(n+ 1)λ 2

+
1
2

n(n+ 1)(n+ 2)λ

+
1
6
(n+ 1)(n+ 2)(n+ 3),
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i. e.,

ζ (Mn,3) =
(

n
3

)
λ 3 + 3

(
n+ 1

3

)
λ 2

+ 3

(
n+ 2

3

)
λ +

(
n+ 3

3

)
, n ≥ 3.

(14)

3.4. The General Case; Mn,m, n ≥ 3

A calculation analogous to what was described
above, but significantly more cumbersome, leads to the
following expression for the quadruple linear chains:

ζ (Mn,4) =
(

n
4

)
λ 4 + 4

(
n+ 1

4

)
λ 3 + 6

(
n+ 2

4

)
λ 2

+ 4

(
n+ 3

4

)
λ +

(
n+ 4

4

)
, n ≥ 4.

(15)

Comparing (15) with (10), (13), and (14) suggests that
the general solution of the recurrence relation (8) is of
the form

ζ (Mn,m,λ ) =
m

∑
k=0

(
m
k

)(
n+ k

m

)
λ m−k, n≥m. (16)

Indeed, the validity of (16) could be proven by math-
ematical induction on the parameter m; details of this
proof are omitted.

In the notation defined by (3), the coefficients of the
Zhang-Zhang polynomial of Mn,m satisfy the relation

z(Mn,m,k) =
(

m
m− k

)(
n+ m− k

m

)
(17)

for k = 0,1, . . . ,m.

4. Applications

Bearing in mind the properties (a) – (c) of the
Zhang-Zhang polynomial, from formula (16) we read-
ily deduce the following three properties of the multi-
ple linear hexagonal chains:

1. The number of Kekulé structures of Mn,m is
(n+m

m

)
,

a long time known result [13,21].
2. Provided n ≥ m, the Clar number of Mn,m is m. If

n ≤ m, then Cl{Mn,m} = n.
3. Provided n ≥ m, the number of Clar resonance

sextet formulas of Mn,m is
(n

m

)
. If n ≤ m, then

C{Mn,m} =
(m

n

)
. This result has been reported

in [14]. It is worth noting that in the case n = m the
Clar formula of Mn,m is unique, i.e., C{Mn,n} = 1.

Zhang and Zhang proved in [3, 4] a remarkable iden-
tity, relating their polynomial with the sextet polyno-
mial of Hosoya and Yamaguchi:

σ(B,λ ) = ζ (B,λ −1), (18)

cf. (1) – (4). Formula (18) holds if no coronene frag-
ment can be deleted from B, so that the resulting sub-
graph is Kekuléan. The multiple linear chains consid-
ered in this paper obey this condition. Therefore (18)
holds for Mn,m.

From (18) immediately follows that

s(B,k) = ∑
j≥k

(−1) j
(

j
k

)
z(B, j)

for j = 0,1,2, . . . ,Cl{B}. Combined with (17), this
gives for the coefficients of the sextet polynomial of
the multiple linear benzenoid chains

s(Mn,m,k) = ∑
j≥k

(−1) j
(

j
k

)(
m

m− j

)(
n+ m− j

m

)
,

and for the entire sextet polynomial

σ(Mn,m,λ ) =

m

∑
k=0

[
∑
j≥k

(−1) j
(

j
k

)(
m

m− j

)(
n+ m− j

m

)]
λ k.
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zenoid Hydrocarbons, Springer-Verlag, Berlin 1988.
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